You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.
Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.
V A S E S | ||||||
1 | 2 | 3 | 4 | 5 | ||
Bunches | 1 (azaleas) | 7 | 23 | -5 | -24 | 16 |
2 (begonias) | 5 | 21 | -4 | 10 | 23 | |
3 (carnations) | -21 | 5 | -4 | -20 | 20 |
The first line will contain the sum of aesthetic values for your arrangement.
3 5 7 23 -5 -24 16 5 21 -4 10 23 -21 5 -4 -20 20
53